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Abstract 
In this paper we introduces a new realtime level-of-detail deep-
water animation scheme, which uses many different proven water 
models. In addition we show how to utilities today’s latest graphic 
hardware for realistic rendering of oceans. Keywords: FFT, Surface 
Dynamics, Navier-Stokes, Caustics, Godrays, Water optics, Foam 
and Spray.  

1. Introduction 
This paper introduces a fairly complete animation 
and rendering model for deep-water. In short the 
animation model is based on mixing the state-of-
the-art water models from the computer graphics 
literature to suite our need for it to remain realtime. 
This includes: 

• Oceangraphic statistics based surface 
wave model for ocean waves (2.1 FFT) 

• Physical correct surface wave model, 
taking depth into account, for realistic 
shorelines etc. (2.3 Shallow water waves) 

• Constraint physical correct wave model 
for object interaction (2.4 Surface waves) 

• Full Navier-Stokes simulated bump-map 
for surface tensions and similar turbulent 
effects (2.2 Navier-Stokes Equations) 

 Our realistic (realtime) rendering of water includes 
all of the following visual features: 

• View dependent water colouring (3.3 
Colour of water) 

• Global reflection/refraction (3.1 
Reflection/Refraction) 

• Local reflection/refraction (3.1.1 
Reflection, 3.1.2 Refraction) 

• Caustics (3.5 Caustics) and Godrays (3.6 
Godrays) 

• Foam and spray (3.7 Foam, Spray and 
Bubbles) 

2. Animation  
The main philosophy behind our animation is that 
there is “no single model fitting all needs”. We 
haven’t tried to make one super model, but instead 
investigated how to blend between different types 
and levels of animation. We will first present all the 
difference models used, and then summaries how 
and what we used them for.  

2.1 FFT  
In this chapter, we will describe the algorithm we’re 
using as a core of our sea animation. The algorithm 

is explained in detail in [2]. This model isn’t based 
on any physics models, but instead uses statistical 
models based on observations of the real sea. The 
method has been used commercially several times, 
for example for sea animation in the movies Titanic 
and Waterworld. 
In this statistical model of sea, wave height is a 
random variable of horizontal position and time, 
h(X,t). It decomposes the wave heightfield into a set 
of sinus waves with different amplitudes and phases. 
While the model itself provides us with a tool to 
generate these amplitudes and phases, we use 
inverse Fast Fourier Transformation (FFT) as a 
mean to quickly evaluate the sum.   
FFT is a fast version of discrete Fourier 
transformation, i.e. Fourier transformation that 
samples the input at regularly placed points. 
Description of both regular FT and FFT together 
with it’s interesting properties and working 
algorithms can be found in [6], which is also 
available online. 
FFT allows us to quickly evaluate the following 
sum: 
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Equation 2-1 

Here X is a horizontal position of a point whose 
height we are evaluating. The wave vector K is a 
vector pointing in the direction of travel of the given 
wave, with a magnitude k dependent on the length 
of the wave (λλλλ): 

λπ /2=k  

And the value of ),(
~ tKh is a complex number 

representing both amplitude and phase of wave K at 
time t. Because we are using discrete Fourier 
transformation, there are only a finite number of 
waves and positions that enters our equations. If s is 
dimension of the heightfield we animate, and r is 
the resolution of the grid, then we can write: 

)/2,/2(),( smsnkkK zx ππ==  
where n and m are integers in bounds –r/2 ≤ n,m < 
r/2. Note that for FFT, r must be power of two. 
For rendering the heightfield we need to calculate 
the gradient of the field to obtain normals. The 
traditional approach of computing finite difference 
between nearly placed grid points may be used, but 
it can be a poor approximation of the slope of waves 
with small wavelengths. Therefore, if we can afford 
it (in terms of computational power) it is better to 
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use another FFT, this time evaluating the following 
sum: 
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Equation 2-2 

 
Now that we know how to convert field of complex 
numbers representing wave amplitudes and phases 
into a heightfield, we need a way to create the 
amplitudes and phases themselves. Tessendorf  [2] 
suggests using the Phillips spectrum for wind-driven 
waves. It is defined by the following equation: 
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Equation 2-3 

In this equation, gvl /2= is the largest possible 
wave arising from a continuous wind with speed v, 
g is the gravitational constant, Ŵ is direction of the 

wind and K̂ is direction of the wave (i.e. 
normalized K). a is a numeric constant globally 
affecting heights of the waves. The last term in the 

equation (
2ˆˆ WK ⋅ ) eliminates waves moving 

perpendicular to the wind direction. In this form, the 
resulting animation contains waves that adhere the 
wind direction, but move both with and against it, 
resulting in a lot of meeting waves (and 
opportunities for splashes and foam creation). If you 
prefer waves moving in one direction, you can 
modify this term to eliminate waves that moves 
opposite to the wind (i.e. the dot product is 
negative). 
Also, to improve convergence properties of the 
spectrum, we can try to eliminate waves with very 
small length (w<<l) by multiplying the equation by 
the following term: 

22wke−  
There are now two steps we have to do in order to 
prepare data for FFT – create the amplitudes and 
phases at time zero, and then animate the field. 
The first part can be accomplished using the 
equation: 
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Where ξr and ξi are two independent draws from a 
Gaussian random number generator with mean 0 
and standard deviation 1. 
Now, given time t, we can create a field of the 
frequency amplitudes (independently on previous 
time, which can be valuable): 
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Whereω is angular frequency of wave k 
representing the speed at which the wave travels 
across the surface. You may wonder, what is the 
source of the right term in this equation? It’s there, 
because our resulting heights (result of the inverse 
FFT) are only real numbers (i.e. their imaginary part 
is equal to zero). It can be shown that for such a 

function, the following must holds for the 
amplitudes: 
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where * is the complex conjugate operator1. 
 
As you may notice, there is one last piece missing in 
the jigsaw, and that’s value ofω for a given wave. 
Since we are animating deep-water sea, there is a 
simple relation between ω and the corresponding 
wave-vector K: 

gkK =)(2ω  
Here g is again the gravitational constant and k is 
the magnitude of vector K.  
There are several modifications to this equation, 
perhaps the most useful for our purpose is taking 
depth d into account: 
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Equation 2-4 

Also, if you intend to precalculate the animation, 
you might try to express each frequency as a 
multiply of the same basic angular frequency ω0 to 
ensure that the animation loops after a certain time. 
The results of implementing this set of equations, 
given above, are a tile of highly realistic sea surface. 
Given the properties of the FFT it can be seamlessly 
tiled over and over again. This is a very useful 
property, even though the tiling can be visible as a 
repeating pattern. We can improve this by choosing 
a larger grid, but this obviously comes at a 
computational expense. Tessendorf  [3] mentions 
that for the Titanic animation, a grid size of 2048 
was used. This is unfortunately too big to be 
animated in realtime on consumer-class computers. 
In our experiments we have been using mostly grid 
size 64, which inverse FFT can be computed quite 
fast. The size 128 however gives a (subjectively) 
much better visual result and will probably be the 
right size in case one are targeting today’s high-end 
configurations (and the water animation comprise 
significant part of the whole view). 

2.1.1 Choppy Waves 
The described algorithm produces nice looking 
waves, but they all have rounded tops, which 
suggests nice weather conditions. There is however 
one modification for making the wave tops sharper 
and wave bottoms more flat. 
Instead of modifying the heightfield directly, we 
will horizontally displace the positions of the grid 
points using the equation: 

),( tXDXX λ+=  
where λλλλ is a constant controlling the amount of 
displacement, and D is the displacement vector 
computed with FFT: 
 

                                                           
1 (a+bi)* = (a-bi) 
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Equation 2-5 

 
The value of λλλλ must be carefully chosen – if it’s too 
big the waves start to intersect them selves, and that 
certainly breaks the realism. However, detecting this 
situation seems to be a good way of spawning foam 
and spray – more on this in chapter 3.7. The 
difference between the normal waves and the 
choppy waves modification can be seen in Figure 
2-1 and Figure 2-2 respectively. 
 

 
Figure 2-1. Normal wave profile. 

 

 
Figure 2-2. Choppy waves: Profile of the waves in 
Figure 2-1 after the modification.  

2.2 Navier-Stokes Equations  
In the field of Computational Fluid Dynamics 
(CFD) the Navier-Stokes Equations (NSE) are 
know to fully describe the motion of incompressible 
viscose fluid. In NSE there are three types of forces 
acting: 

• Body forces (Fg). These are forces that 
act on the entire water element. We 
assume this is gravity only, so Fg= ρG, ρ 
is density and G is the gravitational force 
(9.81m/s2)  

• Pressure forces (Fp). These forces act 
inwards and normal to the water surface.  

• Viscous forces (Fν). These are forces due 
to friction in the water and acts in all 
directions on all elements of the water. 

 

The pressure forces are defined as the negative of 
the gradient of the pressure field of the water 
elements, i.e.: 
 

pFp ⋅−∇=  

Equation 2-6 

Given the fact that water is a Newtonian fluid [19], 
i.e. a fluid where the stress is linearly proportional 
to the strain, the net viscous force (Fν) per unit 
volume is defined as: 
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Equation 2-7 

 
Where ρ is density, V is velocity and L is 
dimension.  
 

Now that we have all the forces acting in fluids, we will 
use Newton’s second law (F = mA) to describe the 
motion: 
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Equation 2-8 

 Now assuming uniform density we can write 
Equation 2-8 as: 
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Equation 2-9 

 
This equation conserves the momentum. In addition 
we need the mass to be conserved: 
 

0=⋅∇ V  

Equation 2-10 

 
These two equations together are referred to as the 
NSE. Unfortunately the NSE is a set of highly non-
linear Partial Differential Equations (PDEs) that’s 
not easily solved. In the literature there’s many 
methods for discretizating the PDE both in time 
(explicit/implicit) and space (Finite Difference, 
Finite Volume, Finite Element). Going into detail 
on how to solve the NSE would require a document 
it self, so instead we will just briefly described what 
we implemented and how we used the result.  
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We started by implementing an explicit finite 
difference scheme on a uniform grid known as the 
Marker-And-Cell (MAC) method, since this is 
widely used in earlier works ([7], [8], [9], and [10]). 
In short, we divide the solution space into finite 
cells that holds the velocity and pressure. We then 
solves Equation 2-9 by finite differences on this 
grid, for then to enforce Equation 2-10 by an 
iterative process called Successive Over Relaxation 
(or one can form a linear system and solve it with 
for example a Preconditioned Conjugate Gradient 
method). While solving this is rather simple in 
closed form2, adding boundary conditions and then 
in particular free-surface conditions is complicated 
and not well described in the given references. 
Another problem inherent to finite differences, are 
stability. Although what’s know as the Courant-
Friedrichs-Levy (CFL) conditions for stability can 
be somewhat3 enforced by calculating local 
viscosity and adjusting the time step according to 
the velocity and the cell size, it gave us unbelievable 
much pain! We therefore took the time to also 
implement Jos Stam’s stable solver [11]. Once again 
it turns out that we can use FFT for solving the 
closed form, that we will use for the surface details. 
Stam has recently also released source code for this 
solver [18], so one should be able to get up running 
with this effect quite fast! Once we have a field 
solved with the NSE, we populate it with particles 
that are moved according to the bilinear interpolated 
velocity of the nearest grid elements. These particles 
will quickly form streamlines (see Figure 2-3) in the 
field, showing all the turbulent vorticity we expect 
to see on a tension surface. We then take the finite 
differences of these particles velocities, and treat 
them as tangents, for normal calculation. All these 
normals are then feed into a bump-map, that we 
apply as real-time surface detail as shown in Figure 
2-4.       
 

 
Figure 2-3. Our 2D NSE solver showing how the 
particles forms streamlines in the closed container. The 
velocity and pressure field is also shown on the right 
side of the view.   

                                                           
2 By closed form we mean the case where all cells has 
liquid and the boundaries are treated periodic.  
3 Theoretically this should control stability, so we might 
have an error in our free-surface boundary condition code. 

 
Figure 2-4. This image shows the subtle, but lovely, 
surface details, resulting from the real-time updated 
bump-map (particle field solved with the 2D NSE). 

2.3 Shallow water waves 
All of our shallow water simulations are based on 
[17] where Kass and Miller use a simplified set of 
equations to simulate ocean waves. If we look at the 
horizontal velocity in 2D and assuming, among 
other things, that the water volume can be described 
by a height-field we end up with the following set of 
equations: 
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Equation 2-12 

 
Were G is gravity (and other global forces), h is the 
height of the water surface, d is the depth, and u is 
the horizontal velocity of a vertical column of water. 
We can also combine these two equations. Start by 
differentiate Equation 2-11 with respect to x and 
Equation 2-12 with respect to t: 
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Equation 2-13 
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Equation 2-14 

Now substituting the partial cross-derivative of 
Equation 2-14 into Equation 2-13 we end up with: 
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Equation 2-15 

 
Using finite-differences we can discretisate this as: 
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Equation 2-16 

Now that we have turned the partial-differential 
equation into a second order ODE we will solve it 
using a first-order implicit method. First we will use 
finite-differences to discretisise the first- and second 
order time-derivatives of h: 
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Equation 2-17 
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Equation 2-18 

  
We are solving for hi so we will rearrange Equation 
2-17 and substitute it into Equation 2-18: 
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Equation 2-19 

 
And substituting Equation 2-16 into this we get: 
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Equation 2-20 

The last discretisation done is to treat the depth as 
constant during iteration, so one ends up with the 
following linear system: 
 

212 −− −= iii hhAh  

Equation 2-21 

Where A is given by: 
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Now this matrix gives a symmetric tridiagonal linear 
system, which can be solved relatively fast, see [6] 
for more info. Expanding Equation 2-14 to 3D is 
done by substituting the partial derivative of h with 
respect to x with the Laplacian: 
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Equation 2-22 

And it’s solved exactly as the 2D case simply by 
splitting it up into two systems - one dependent on x 
and one on y.  

2.4 Surface waves 
The last level of animation detail we use is strictly 
2D surface waves. If we take our height-field from 
earlier and constrains the water to a fixed depth, 
Equation 2-22 reduces to: 
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Equation 2-23 

 
Where |V| is the velocity of the wave (across the 
surface). Let hx,y

t  be the height of the grid at 
position x and y at time t, then Equation 2-23 can be 
discretisised using central differences as [3]: 
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Equation 2-24 

And then rearranging for t+1: 
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Equation 2-25 

 
As shown in great detail in [3] this can be animated 
with just a few arithmetic operation pr. grid-
element.  

2.5 Mixing of the models 
Ideally we would like to use NSE for all the water 
dynamics, but even solutions of order O(n)4 is still 
too computational expensive for real-time purposes. 
Instead we decided to use NSE for surface details 
only, restricting the problem to two dimensions. As 
mentioned before, the core of our animation is the 
FFT-water algorithm. This provides us both with 
large waves, used for the actual geometry, and with 
small waves optionally used for bump mapping. 
While the waves generated in this way look very 
realistic, they have one inherent problem – floating 
objects cannot interact with the water in any way. 
This is where the other models come in! We 
implemented both the shallow water model as 
described in chapter 2.3 Shallow water waves and 
the “traditional” simple surface water as described 
in chapter 2.4. The shallow water method has 
several very advanced properties – it takes depth of 
the surface into account (resulting in waves slowing 
down and aligning with the coast line) and it can 
simulate water that floods previously dry areas. 
However, we didn’t intend to use the model for 
these large-scale effects and for small waves, around 
floating objects, the simpler model seems (at least 
subjectively) to give better results (as well as being 
a bit easier to control). 
For mixing the FFT and physics water, we simply 
take the geometry from the FFT algorithm and 
superimpose on it the geometry resulting from the 
physics model (that’s computed only around 
floating objects). Although not physically correct, 
this provides us with the results we desire. 

2.6 Buoyant Rigid Objects 
For adding a rigid object that interacts with the 
water surface, we need to apply buoyancy to the 
object and waves to the water surface.  

                                                           
4 For n being number of grid cells in the typical MAC 
configuration. 

One method for approximating buoyancy is 
described for example in [3]. As known, according 
to Archimedes, the force of buoyancy is equivalent 
to the weight of water displaced by the floating 
objects. To approximate the displaced volume, we 
represent the object by a series of patches described 
by the coordinates of their centre, their area (a) and 
their normal (N). Then for a given patch (if it’s 
centre lies in the water), the volume of displaced 
water can be written as: 

NPPav centerpatchwater )( _−=  
where Pwater is the point on the water surface and 
Ppatch_center is the position of the centre of the patch.  
Now, for simplification, we can assume that this 
force has always direction of the water surface’s 
normal at the given sampling point. Thus the force 
applied to the centre of our patch is: 

watervNF ρ=  
where ρρρρ is the water density. We apply this force to 
the given point using the standard equation for rigid 
object physics, as described for example in [13].  
There are also two other forces that we should try to 
simulate. First, floating objects don’t slide freely on 
the water because of drag. We approximate it for 
each patch using equation: 

aVFdrag β−=  

where ββββ is constant and V is velocity of the patch 
centre relative to the water. 
Also, when object with proper shape moves on the 
water, it rises out from the water, depending of it’s 
shape, orientation and velocity (this effect is best 
seen on boats). 
We use the following equation to approximate this 
effect: 

NVNaF )( ⋅−= ϕ  
where ϕϕϕϕ is another constant. 
Note that we use bilinear interpolation of values 
defined in the grid, to obtain all quantities 
connected to the water surface, at arbitrary points on 
the surface. 
While this covers the way water affects floating 
objects, there should also be feedback going in the 
opposite way. The proper solution would be to take 
the object into account directly in the physical 
equations used for animating the water surface, but 
since values entering these equations don’t represent 
the complete mixed water anyway, we decided to 
use another approach. First, for all grid elements 
touched by any object, we temporally increase the 
damping factor in the wave model used for object 
interaction (this creates a wave “shadow” – i.e. 
place in which waves don’t spread). Secondly, we 
compute the change in depth of the floating object 
between the last and current frame, and feed this 
difference back to the water surface as direct 
displacement of the surface. With correct scale of 
this effect, we get both waves from objects that falls 
into the water and waves formed behind moving 
objects (such as boats). 
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3. Rendering 

3.1 Reflection/Refraction 
Most of the visual effects of water are due to 
reflections and refractions (more detailed 
description can be found for example in [2] and 
[16]). When a ray hits the water surface, part of it 
reflects back to the atmosphere (potentially hitting 
some object and causing reflective caustics, or 
hitting the water at other place, or camera), and part 
of it transmits inside the water volume, scattering 
(which causes god rays), hitting objects inside the 
water (causing caustics) or going back into the 
atmosphere. Thus completely correct lighting would 
require sophisticated global shading equations and 
wouldn’t even be close to realtime. We simplify this 
by only taking first-order rays into account. 

3.1.1 Reflection 
The equation for reflection is well known. For an 
eye vector E (i.e. the ray from the given point to the 
eye) and the surface normal N, the reflected ray is: 

ENNER −⋅= )(2  
This ray is then used for lookup in cube-map 
containing the environment (for ocean typically only 
the sky).  
While the cube-map is ideal for reflecting 
environment in distance, it’s not very suitable for 
local reflections (for example boat floating on the 
water). For this we use a modification of the basic 
algorithm used for reflections on flat surfaces 
(described for example in [14]). We set up the view 
matrix so that it shows the scene, as it would be 
reflected from a flat plane placed at height zero, and 
render the whole scene into a texture. Now if we 
simple used projective textures, we could render the 
water surface roughly reflecting the scene above it. 
To improve the effect, we assume that our whole 
scene is placed on a plane positioned slightly above 
the water surface. We intersect the reflected ray with 
this plane and then compute the intersection of ray 
between this point and the reflected camera. The 
resulting point is then fed into the projective texture 
computations. 
Note that when rendering to the texture, we set the 
camera’s FOV (field of view) slightly higher than 
one do for the normal camera, because the water 
surface can reflect more of the scene than a flat 
plane would. 

3.1.2 Refraction 
We will use Snell’s Law to calculate the refracted 
ray that we need both for the refracted texture 
lookup and for the caustics calculations. Snell’s 
Law is simply: 
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Equation 3-1 

 

Where Θi is the angle of incidence (i.e. angle 
between the view vector and the surface normal), Θr 
is the refracted angle (i.e. between the reflected ray 
and negate of normal) and na and nb is the index of 
refractions for the two materials in question. Setting 
the index of refraction for air and water equal to 1 
and 1.333 respectively we can write Equation 3-1 
as: 
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Equation 3-2 

While this works perfectly in 2D, use of this 
equation directly in 3D would be too cumbersome. 
When using vectors, it can be shown that the 
refracted ray is described by: 
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Here + sign is used when 0<⋅ NE . For derivation 
of this formula, see [15]. With this vector, we are 
now ready to render the refraction visible on water 
surface. For the global underwater environment we 
again use a cube map. For local refractions we use 
an algorithm very similar to that used for 
reflections, with only two differences – the scene is 
rendered into the texture normally, and the plane 
we’re using for perturbing the texture coordinates is 
placed below the water surface. 

3.2 Approximating the Fresnel term 
One of the most important visual aspects of 
rendering water realistically is due to the Fresnel 
equation that defines a weight for the blending 
between the reflection and refraction. Without using 
the Fresnel term, which defines the amount of 
reflection according to the incoming light’s angle 
and the index of refraction of the materials 
considered, one typical gets a very “plastic look”. 
From [1] we have: 
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Equation 3-3 

 
Here α is the angle between incoming light and the 
surface normal and na and nb is the coefficients 
from Snell’s law (Equation 3-2). Since we use an 
index of 1.333 g only depends on k, so it’s possible 
to precalculate this and store it in a one-dimensional 
texture [4]. Another possibility is to approximate 
Equation 3-3 with a simpler function so we can 
calculate it directly with the CPU or on the GPU 
using vertex-/pixel-shaders. In the implementation 
of [5] they approximate this simply by a linear 
function that we didn’t find adequate. Instead by 
experimentations we found out that reciprocal of 
different powers gives a very good approximation. 
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In Figure 3-1 we can see the error-plot of a few 
different powers, and in Figure 3-2 we see our 
chosen power compared against Equation 3-3.  
  

 

 
Figure 3-1 Difference between approximations of 
different powers compared to Equation 3-3. Red solid 
line = power of 8. Blue dashed line = power of 7 and 
Green dashed line = power of 6.  
 

 
Figure 3-2. Fresnel 1/(x+ 1)8 approximation (dashed 
blue line) vs Equation 3-3. X axis = cos between normal 
and eye vector. Y axis = reflectivity parameter. 

3.3 Colour of water 
In chapter 3.1.2 we have described how to render 
refractions on the water surface. It should however 
be noted that for deep water, only local refractions 
should be rendered since one cannot see the sea 
bottom or any other deeply placed objects (and even 
the local refractions should be rendered with some 
kind of fogging). The water itself however has 
colour that depends on the incident ray direction, 
the viewing direction and the properties of the water 
matter itself. To remedy for this effect we take the 
equations presented in [16], that describes light 
scattering and absorption in water, and modify them 
as described shortly. If we don’t take any waves into 
account (i.e. we treat the water surface as a flat 
plane) and ignore effects like Godrays, we obtain 
closed formulas for the watercolour depending only 
on the viewing angle. This colour is then 
precalculated for all directions and stored in a cube-
map, which is used in exactly the same way as the 
cube-map for the refracted environment was. 

Thanks to that we get darker blue water when 
looking into depth and brighter greenish colour 
when looking at the waves, as shown in Figure 3-3. 
 

 
Figure 3-3. This image shows the result of using the 
watercolour cube-map instead of the refraction cube-
map. 

3.4 Using Bump-mapping to reduce 
geometry 
In addition to using traditional Level-Of-Detail 
(LOD) methods for reducing our dense mesh, we 
can place the highest frequencies from the FFT 
directly into a bump-map. With the per pixel bump-
mapping capabilities of new hardware, one can 
render with an extremely coarse grid-size and still 
maintain a hi image quality as shown in Figure 3-4 
with it’s wireframe shown in Figure 3-5.  
 
 

 
Figure 3-4. Shallow water rendered with a real-time 
updated bump-map. Due to the refraction one can see 
contours of the mountain below.  
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Figure 3-5. Wireframe of the mesh used to render the 
image in Figure 3-4. Please note that the crossing lines 
are due to the degenerated trianglestips. 

3.5 Caustics 
Caustics are beautiful light sinuous shifting patterns 
due to sunlight transmitted from the specular water 
surface. Caustics are a typical indirect lighting effect 
and are generally very hard to do in realtime. 
Luckily we can optimise the problem by only 
considering first order rays (i.e. only one specular-
diffuse transmission) and by assuming the receiving 
diffuse surface is at a constant depth. Now given 
these, visual acceptable, constraints we use a light 
beam-tracing scheme described by Watt&Watt [1]. 
For each specular triangle (i.e. our water surface) we 
create a light beam by calculating refracted rays for 
each vertex using Snell’s law (Equation 3-1) with 
the vertex’s normal (Nv) and the light-vector (i.e. 
vector from sun to the vertex) (L) as arguments. 
These light beams are then intersected against the 
xz-plane (our sea-bottom) at a given constant y- 
depth. See Figure 3-6 for an illustration of this 
method. Each of these beams will then diverge or 
converge on to the plane, so we need to describe 
their intensity. In [1] they use the following: 
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Equation 3-4 

 
Where N is the normal of the triangle, L as defined 
earlier, as is the area of the specular surface (i.e. 
triangle at the water surface) and ac is the area of the 
caustic surface (i.e. triangle after intersecting with 
the xz-plane). Since we know that the entire water 
surface is refracted as light beams we can simply 
create one huge degenerated5 triangle-strip for the 
caustic mesh, and update the position and intensities 
of this mesh’ vertices as described.  
 

                                                           
5 This is a strip that contains triangles with area zero, 
that’s typically ignored by the graphic hardware. 

 
Figure 3-6. Four sample triangles for caustics 
computation. 

 
Unfortunately although the FFT water surface tiles, 
the resulting caustics pattern does not, because we 
use only one tile of the surface in the computations. 
Since calculating the caustics takes considerable 
time we can’t afford to calculate it for the entire 
ocean, so we need a way to make it “tileable”. We 
solve this by blitting parts of the resulting caustic 
texture nine times, one for each directions, from a 
large caustic texture.  Each part is added to the 
middle “cut out” which we use as the final caustics 
texture. This process is illustrated in Figure 3-7 
with the result shown in Figure 3-8. A nice side 
effect of this process is that we can use the multi-
texturing capabilities of today’s hardware to do 
Anti-Aliasing at the same time. We simply set up 
four passes of the same texture and perturblate the 
coordinates of each pass slightly to simulate the 
effect of a 2x2 super-sampling. This is in our 
opinion needed, since the caustics patterns has a lot 
of details that quickly aliases if the specular surface 
isn’t dense enough to represent the pattern properly. 
On the other hand we could of course use the other 
passes to reduce the number of blits.       
 

 
Figure 3-7. The left part of 1024x1024 caustics texture 
is added to the right half of the inner 256x256 part of 
the image. A similar process is done for the eight other 
pieces.  
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Figure 3-8. Resulting 256x256 caustics texture with 2x2 
AA. Notice how each side is added to the opposite so it 
tiles seamlessly. 

Since the caustics patterns changes rapidly with 
depth, as seen in Figure 3-9, we use the camera’s 
bounding box and previous depth to decide an 
average depth to use. 
For applying this texture to objects underwater, we 
need a way to calculate the texture-coordinates into 
the caustics texture. Given the sun’s ray direction 
and the position of a triangle, we compute it’s 
texture’s UV coordinates by projecting the texture 

from the height of the water in the direction of the 
ray (note that because this works as a parallel 
projection, we don’t even have to use projective 
textures here). In addition we compute the dot 
product between the surface’s normal and the 
inverted ray direction to obtain the intensity of the 
applied texture (we use this as alpha then). 
The same algorithm can be used to create reflective 
caustics on objects above water. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3-9. From left to right these caustics pattern are at depth 10m, 100m and 200m respectively. Light is coming 
directly from above (0,-1,0) in all images.  

3.6 Godrays 
In chapter 3.5 we described how the light causes 
caustics by the water surface focusing and 
defocusing light rays. However as the rays pass the 
water matter, they scatter from small particles 
floating in the water (plankton, dirt), making them 
visible and causing streaks of light known as 
Godrays. Rendering this phenomenon correctly 
would require volumetric rendering. However if we 
don’t insist on absolute correctness, preferring the 
visual look of the result, we can use a quite simple 
algorithm to create relatively convincing pictures. 
We already have the caustics texture, which 
represents shape and positions of the individual ray 
streaks (even though only as a slice at given depth). 
If we define this slice to represent the light intensity 
for the whole volume, we can render it using 
techniques for volumetric rendering.  
Given position of our camera, we create several (in 
our experiments 32) slices of the volume as seen in 
Figure 3-10. We then render them into the 
completed scene with additive alpha-blending (and 
writes to zbuffer disabled). 
Because this method shows visible artefacts – 
revealing the low sampling, we use a non-uniform 

distribution of the samples. We use high density in 
front of camera – these samples are responsible for 
the smooth look of the result and for bright spots 
where they should be. The lower density samples 
further away from the camera ensure that the rays 
extend into distance. 
Since increasing the number of rendering passes 
considerably slows down the whole process, we can 
use the multitexturing capabilities of graphics 
hardware to increase the number of samples as 
suggested in [12]. So even if we render just one 
slice, we apply to it four textures at once as if they 
represented subsequent samples of the volume. In 
this way we obtain 128 samples on the GeForce3, 
which gives us smooth enough pictures in most 
cases (as seen in Figure 3-11). 
Note that we can “skew” the volume, resulting from 
repeating our caustics texture, in any way to 
simulate rays going from a given direction 
(according to position of the sun). 
An additional improvement (which we didn’t 
implement) would be to use shadow buffer to take 
shadows cast by objects in water into account. 
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Figure 3-10. Slices of the volume in front of camera 
used for rendering god rays. 

 
Figure 3-11. Resulting image for the volume slices 
shown in Figure 3-10 

3.7 Foam, Spray and Bubbles 
Whenever the water surface is violent enough or the 
water meeting obstacles, we should see foam 
resulting from the breaking waves. Probably the best 
way to render this would be to use particle system, 
but this would be quite costly for our purposes. 
Instead, we take advantage from the fact that the 
foam always lies on the water surface and render is 
as another texture layer on top of it. 
In our implementation, each vertex of the grid has 
assigned an “amount of foam” to it. Then, when 
rendering the surface, we use this amount as 
transparency for the foam texture stretched over the 
whole surface (the texture itself is rendered with 
additive blending).  
Now the only thing left to solve is spawning of the 
foam itself. Here we use modification of the 
algorithm suggested in [2]. For a given vertex and 
its two neighbours (in x and z direction) we 
compute the difference between their slopes. If you 
remember the way we animated choppy waves in 
paragraph 2.1.1, the displacement used does in fact 
represent how close these points get. Now if the 
computed difference is less than a chosen (negative) 
limit, we increase the foam amount for the given 
vertex by a small number. Otherwise, we decrease 
its current foam amount (causing the foam already 
existing to fade away). In this way we get foam 
spawning near tops of big choppy (and possibly 
meeting) waves. See Figure 3-12 for a typical result 
of the foam generation. 

It is important to note that even though the alpha 
factor of the foam texture is limited to the range 
[0,1], this is not true for the foam amount (that can 
be more then one, but should be still limited). Also, 
when we detect a foam-producing point, we 
shouldn’t set its foam amount immediately to 
maximum – the vertex is likely to spawn foam the 
next few frames as well, and increasing the foam 
amount slowly gives a better visual result. 
Limitations of this technique are quite obvious – the 
rendered foam looks quite similar at different places 
(since it’s just a repeated texture, not an uniquely 
generated pattern), and it doesn’t move on the water 
surface according to it’s slope (though one might 
get the impression that this is happening when using 
the choppy waves algorithm). 

 
Figure 3-12. Foam generated by our proposed 
method. 

3.7.1 Particle System 
When water collides against obstacles we generate 
spray of water using a particle system with simple 
Newtonian dynamics, see [20]. Each particle is 
given an initial velocity taken directly from the 
water-surface’s velocity, at the spawning position, 
with added turbulence. It’s then updated according 
to gravity, wind and other global forces thereafter. 
Rendering of the particles are done with a mixture 
of alpha-transparency and additive-alpha sprites. 
See Figure 3-13 for a screen shot of this effect. The 
particle system is also used for drawing bobbles 
from objects dropped into the water. For this effect 
we simply move the bobbles on a sinus path around 
the buoyancy vector up to the surface were they are 
killed.  
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Figure 3-13. Water spray generated when two waves of 
opposite direction meets. 

4. Implementation details 
We implemented the algorithms described in this 
paper on a PC platform with windows. Both the 
FFT-based and physical-based animations were 
realized for grids with 64x64 elements. Two FFTs 
were required for the animation, one complete 
complex→complex for the surface slope (that is 
later used either for the choppy waves or for surface 
normals) and one complex→real for surface height. 
Our first implementation used routines from [6], but 
later we replaced them by faster routines from the 
Intel Math Kernel Library. 
Rendering is implemented in DirectX 8.1 using 
nVidia’s  GeForce3 hardware for rendering. While 
the basic computations (heights, normals, foam etc.) 
is done only once for a single water tile (that can be 
repeated all over the place), many other 
computations depends on the viewer position (we 
use local viewer everywhere) and thus had to be 
done separately for each tile. This offers perfect 
opportunity for the use of vertex shaders, offloading 
the burden of those computations from CPU. Some 
of these effects (especially per-pixel bump-
mapping) requires the use of pixel shaders as well, 
but in general most of the algorithms described here 
should be possible on DirectX7 class hardware. 

5. Summary and future 
extensions 
We have presented a new scheme for deep-water 
animation and rendering. It’s main contributions on 
the animation side is the blending of proven 
methods for realistic object/ocean interaction. On 
the rendering side we have presented a new method 
for foam rendering and shown clever use of the new 
3D graphic cards features to reach new levels of 
(realtime) realism.  
There are many extensions, to the current 
implementations, that we want to try out in the 
future. First of all we are not to impressed by our 
Phong shaded water shimmering. We believe this is 
mainly because of too low contrast in the final 
image. Contrast enhancement can probably be 
realised by using Hi-Dynamic Range Images 
(HDRI), as described in [22]. We also want to try 

prefiltering of the environment-map [21] to 
approach the BRDF shading of water. When it 
comes to animation, there’s so much cool stuff out 
there to follow up! Foremost we are trying to get the 
ocean sinus model from [23] to work with our 
system…breaking waves next?       
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