
 Page 1 of 13

Deep-Water Animation and
Rendering

Lasse Staff Jensen Robert Goliáš
Technical Manager Programmer
Tech Department Tech Department
Funcom Oslo AS Funcom Oslo AS

lassesj@funcom.com golias@funcom.com

Abstract
In this paper we introduces a new realtime level-of-detail deep-
water animation scheme, which uses many different proven water
models. In addition we show how to utilities today’s latest graphic
hardware for realistic rendering of oceans. Keywords: FFT, Surface
Dynamics, Navier-Stokes, Caustics, Godrays, Water optics, Foam
and Spray.

1. Introduction
This paper introduces a fairly complete animation
and rendering model for deep-water. In short the
animation model is based on mixing the state-of-
the-art water models from the computer graphics
literature to suite our need for it to remain realtime.
This includes:

• Oceangraphic statistics based surface
wave model for ocean waves (2.1 FFT)

• Physical correct surface wave model,
taking depth into account, for realistic
shorelines etc. (2.3 Shallow water waves)

• Constraint physical correct wave model
for object interaction (2.4 Surface waves)

• Full Navier-Stokes simulated bump-map
for surface tensions and similar turbulent
effects (2.2 Navier-Stokes Equations)

 Our realistic (realtime) rendering of water includes
all of the following visual features:

• View dependent water colouring (3.3
Colour of water)

• Global reflection/refraction (3.1
Reflection/Refraction)

• Local reflection/refraction (3.1.1
Reflection, 3.1.2 Refraction)

• Caustics (3.5 Caustics) and Godrays (3.6
Godrays)

• Foam and spray (3.7 Foam, Spray and
Bubbles)

2. Animation
The main philosophy behind our animation is that
there is “no single model fitting all needs”. We
haven’t tried to make one super model, but instead
investigated how to blend between different types
and levels of animation. We will first present all the
difference models used, and then summaries how
and what we used them for.

2.1 FFT
In this chapter, we will describe the algorithm we’re
using as a core of our sea animation. The algorithm

is explained in detail in [2]. This model isn’t based
on any physics models, but instead uses statistical
models based on observations of the real sea. The
method has been used commercially several times,
for example for sea animation in the movies Titanic
and Waterworld.
In this statistical model of sea, wave height is a
random variable of horizontal position and time,
h(X,t). It decomposes the wave heightfield into a set
of sinus waves with different amplitudes and phases.
While the model itself provides us with a tool to
generate these amplitudes and phases, we use
inverse Fast Fourier Transformation (FFT) as a
mean to quickly evaluate the sum.
FFT is a fast version of discrete Fourier
transformation, i.e. Fourier transformation that
samples the input at regularly placed points.
Description of both regular FT and FFT together
with it’s interesting properties and working
algorithms can be found in [6], which is also
available online.
FFT allows us to quickly evaluate the following
sum:

∑ ⋅=
K

XiKetKhtXh),(
~

),(

Equation 2-1

Here X is a horizontal position of a point whose
height we are evaluating. The wave vector K is a
vector pointing in the direction of travel of the given
wave, with a magnitude k dependent on the length
of the wave (λλλλ):

λπ /2=k

And the value of),(
~ tKh is a complex number

representing both amplitude and phase of wave K at
time t. Because we are using discrete Fourier
transformation, there are only a finite number of
waves and positions that enters our equations. If s is
dimension of the heightfield we animate, and r is
the resolution of the grid, then we can write:

)/2,/2(),(smsnkkK zx ππ==
where n and m are integers in bounds –r/2 ≤ n,m <
r/2. Note that for FFT, r must be power of two.
For rendering the heightfield we need to calculate
the gradient of the field to obtain normals. The
traditional approach of computing finite difference
between nearly placed grid points may be used, but
it can be a poor approximation of the slope of waves
with small wavelengths. Therefore, if we can afford
it (in terms of computational power) it is better to

mailto:lasse@funcom.com
mailto:golias@funcom.com

 Page 2 of 13

use another FFT, this time evaluating the following
sum:

∑ ⋅=∇
K

XiKetKhiKtXh),(
~

),(

Equation 2-2

Now that we know how to convert field of complex
numbers representing wave amplitudes and phases
into a heightfield, we need a way to create the
amplitudes and phases themselves. Tessendorf [2]
suggests using the Phillips spectrum for wind-driven
waves. It is defined by the following equation:

2

4

)/(1
ˆˆ)(

2

WK
k

eaKP
kl

h ⋅=
−

Equation 2-3

In this equation, gvl /2= is the largest possible
wave arising from a continuous wind with speed v,
g is the gravitational constant, Ŵ is direction of the

wind and K̂ is direction of the wave (i.e.
normalized K). a is a numeric constant globally
affecting heights of the waves. The last term in the

equation (
2ˆˆ WK ⋅) eliminates waves moving

perpendicular to the wind direction. In this form, the
resulting animation contains waves that adhere the
wind direction, but move both with and against it,
resulting in a lot of meeting waves (and
opportunities for splashes and foam creation). If you
prefer waves moving in one direction, you can
modify this term to eliminate waves that moves
opposite to the wind (i.e. the dot product is
negative).
Also, to improve convergence properties of the
spectrum, we can try to eliminate waves with very
small length (w<<l) by multiplying the equation by
the following term:

22wke−
There are now two steps we have to do in order to
prepare data for FFT – create the amplitudes and
phases at time zero, and then animate the field.
The first part can be accomplished using the
equation:

)()(
2

1)(
~

0 KPiKh hir ξξ +=

Where ξr and ξi are two independent draws from a
Gaussian random number generator with mean 0
and standard deviation 1.
Now, given time t, we can create a field of the
frequency amplitudes (independently on previous
time, which can be valuable):

tKitKi eKheKhtKh)(*
0

)(
0)(

~
)(

~
),(

~ ωω −−+=
Whereω is angular frequency of wave k
representing the speed at which the wave travels
across the surface. You may wonder, what is the
source of the right term in this equation? It’s there,
because our resulting heights (result of the inverse
FFT) are only real numbers (i.e. their imaginary part
is equal to zero). It can be shown that for such a

function, the following must holds for the
amplitudes:

)(
~

)(
~ * KhKh =−

where * is the complex conjugate operator1.

As you may notice, there is one last piece missing in
the jigsaw, and that’s value ofω for a given wave.
Since we are animating deep-water sea, there is a
simple relation between ω and the corresponding
wave-vector K:

gkK =)(2ω
Here g is again the gravitational constant and k is
the magnitude of vector K.
There are several modifications to this equation,
perhaps the most useful for our purpose is taking
depth d into account:

)tanh()(2 kdgkK =ω

Equation 2-4

Also, if you intend to precalculate the animation,
you might try to express each frequency as a
multiply of the same basic angular frequency ω0 to
ensure that the animation loops after a certain time.
The results of implementing this set of equations,
given above, are a tile of highly realistic sea surface.
Given the properties of the FFT it can be seamlessly
tiled over and over again. This is a very useful
property, even though the tiling can be visible as a
repeating pattern. We can improve this by choosing
a larger grid, but this obviously comes at a
computational expense. Tessendorf [3] mentions
that for the Titanic animation, a grid size of 2048
was used. This is unfortunately too big to be
animated in realtime on consumer-class computers.
In our experiments we have been using mostly grid
size 64, which inverse FFT can be computed quite
fast. The size 128 however gives a (subjectively)
much better visual result and will probably be the
right size in case one are targeting today’s high-end
configurations (and the water animation comprise
significant part of the whole view).

2.1.1 Choppy Waves
The described algorithm produces nice looking
waves, but they all have rounded tops, which
suggests nice weather conditions. There is however
one modification for making the wave tops sharper
and wave bottoms more flat.
Instead of modifying the heightfield directly, we
will horizontally displace the positions of the grid
points using the equation:

),(tXDXX λ+=
where λλλλ is a constant controlling the amount of
displacement, and D is the displacement vector
computed with FFT:

1 (a+bi)* = (a-bi)

 Page 3 of 13

∑ ⋅−=
K

XiKetKh
k
KitXD),(

~
),(

Equation 2-5

The value of λλλλ must be carefully chosen – if it’s too
big the waves start to intersect them selves, and that
certainly breaks the realism. However, detecting this
situation seems to be a good way of spawning foam
and spray – more on this in chapter 3.7. The
difference between the normal waves and the
choppy waves modification can be seen in Figure
2-1 and Figure 2-2 respectively.

Figure 2-1. Normal wave profile.

Figure 2-2. Choppy waves: Profile of the waves in
Figure 2-1 after the modification.

2.2 Navier-Stokes Equations
In the field of Computational Fluid Dynamics
(CFD) the Navier-Stokes Equations (NSE) are
know to fully describe the motion of incompressible
viscose fluid. In NSE there are three types of forces
acting:

• Body forces (Fg). These are forces that
act on the entire water element. We
assume this is gravity only, so Fg= ρG, ρ
is density and G is the gravitational force
(9.81m/s2)

• Pressure forces (Fp). These forces act
inwards and normal to the water surface.

• Viscous forces (Fν). These are forces due
to friction in the water and acts in all
directions on all elements of the water.

The pressure forces are defined as the negative of
the gradient of the pressure field of the water
elements, i.e.:

pFp ⋅−∇=

Equation 2-6

Given the fact that water is a Newtonian fluid [19],
i.e. a fluid where the stress is linearly proportional
to the strain, the net viscous force (Fν) per unit
volume is defined as:

VL

VF

ρ
µ

µν

1

2

=

∇=

Equation 2-7

Where ρ is density, V is velocity and L is
dimension.

Now that we have all the forces acting in fluids, we will
use Newton’s second law (F = mA) to describe the
motion:

VpGA

AFFF pg

2∇+⋅∇−=
⇓

=++

µρρ

ρν

Equation 2-8

 Now assuming uniform density we can write
Equation 2-8 as:

() VpGVV
t
V

VpGA

2

2

1

1

∇+⋅∇−=⋅∇+
∂
∂

⋅∇+⋅∇−=

µ
ρ

µ
ρ

c

Equation 2-9

This equation conserves the momentum. In addition
we need the mass to be conserved:

0=⋅∇ V

Equation 2-10

These two equations together are referred to as the
NSE. Unfortunately the NSE is a set of highly non-
linear Partial Differential Equations (PDEs) that’s
not easily solved. In the literature there’s many
methods for discretizating the PDE both in time
(explicit/implicit) and space (Finite Difference,
Finite Volume, Finite Element). Going into detail
on how to solve the NSE would require a document
it self, so instead we will just briefly described what
we implemented and how we used the result.

 Page 4 of 13

We started by implementing an explicit finite
difference scheme on a uniform grid known as the
Marker-And-Cell (MAC) method, since this is
widely used in earlier works ([7], [8], [9], and [10]).
In short, we divide the solution space into finite
cells that holds the velocity and pressure. We then
solves Equation 2-9 by finite differences on this
grid, for then to enforce Equation 2-10 by an
iterative process called Successive Over Relaxation
(or one can form a linear system and solve it with
for example a Preconditioned Conjugate Gradient
method). While solving this is rather simple in
closed form2, adding boundary conditions and then
in particular free-surface conditions is complicated
and not well described in the given references.
Another problem inherent to finite differences, are
stability. Although what’s know as the Courant-
Friedrichs-Levy (CFL) conditions for stability can
be somewhat3 enforced by calculating local
viscosity and adjusting the time step according to
the velocity and the cell size, it gave us unbelievable
much pain! We therefore took the time to also
implement Jos Stam’s stable solver [11]. Once again
it turns out that we can use FFT for solving the
closed form, that we will use for the surface details.
Stam has recently also released source code for this
solver [18], so one should be able to get up running
with this effect quite fast! Once we have a field
solved with the NSE, we populate it with particles
that are moved according to the bilinear interpolated
velocity of the nearest grid elements. These particles
will quickly form streamlines (see Figure 2-3) in the
field, showing all the turbulent vorticity we expect
to see on a tension surface. We then take the finite
differences of these particles velocities, and treat
them as tangents, for normal calculation. All these
normals are then feed into a bump-map, that we
apply as real-time surface detail as shown in Figure
2-4.

Figure 2-3. Our 2D NSE solver showing how the
particles forms streamlines in the closed container. The
velocity and pressure field is also shown on the right
side of the view.

2 By closed form we mean the case where all cells has
liquid and the boundaries are treated periodic.
3 Theoretically this should control stability, so we might
have an error in our free-surface boundary condition code.

Figure 2-4. This image shows the subtle, but lovely,
surface details, resulting from the real-time updated
bump-map (particle field solved with the 2D NSE).

2.3 Shallow water waves
All of our shallow water simulations are based on
[17] where Kass and Miller use a simplified set of
equations to simulate ocean waves. If we look at the
horizontal velocity in 2D and assuming, among
other things, that the water volume can be described
by a height-field we end up with the following set of
equations:

0=
∂
∂+

∂
∂

x
hG

t
u

Equation 2-11

0=
∂
∂+

∂
∂

x
ud

t
h

Equation 2-12

Were G is gravity (and other global forces), h is the
height of the water surface, d is the depth, and u is
the horizontal velocity of a vertical column of water.
We can also combine these two equations. Start by
differentiate Equation 2-11 with respect to x and
Equation 2-12 with respect to t:

02

22

=
∂
∂+

∂∂
∂

x
hG

xt
u

Equation 2-13

0
2

2

2

=
∂∂

∂+
∂
∂

tx
ud

t
h

Equation 2-14

Now substituting the partial cross-derivative of
Equation 2-14 into Equation 2-13 we end up with:

2

2

2

2

x
hGd

t
h

∂
∂=

∂
∂

Equation 2-15

Using finite-differences we can discretisate this as:

 Page 5 of 13

() ()

() ()ii
ii

ii
iii

hh
x
ddG

hh
x

ddG
t
h

−







∆
+

+−







∆
+−=

∂
∂

+
+

−
−

12
1

12
1

2

2

2

2

Equation 2-16

Now that we have turned the partial-differential
equation into a second order ODE we will solve it
using a first-order implicit method. First we will use
finite-differences to discretisise the first- and second
order time-derivatives of h:

i
ii h

t
hh &=

∆
− −1

Equation 2-17

i
ii h

t
hh &&
&&

=
∆
− −1

Equation 2-18

We are solving for hi so we will rearrange Equation
2-17 and substitute it into Equation 2-18:

()

() iiii

iiiii

hthhh

hhhhht

&&

c

&&

2
21

211
2

2 ∆+−=

+−−=∆

−−

−−−

Equation 2-19

And substituting Equation 2-16 into this we get:

() ()

() ()ii
ii

ii
ii

iii

hh
x
ddG

hh
x

ddG

hhh

−







∆
++

−







∆
+−

−=

+
+

−
−

−−

12
1

12
1

21

2

2

2

Equation 2-20

The last discretisation done is to treat the depth as
constant during iteration, so one ends up with the
following linear system:

212 −− −= iii hhAh

Equation 2-21

Where A is given by:

()

()

()

() 







∆
+∆−=









∆
+∆+=

−∈







∆

++∆+=









∆
+∆+=





























=

+

−−
−

+−

−−

−−−

−−

2
12

2
122

1

2
112

2
102

0

12

213

32

21

110

00

2
)(

2
)(1

1,0,
2

2)(1

2
)(1

,

x
ddtGf

x
ddtGe

ni
x

dddtGe

x
ddtGe

ef
fef

fe

ef
fef

fe

A

ii
i

nn
n

iii
i

nn

nnn

nnO

OOO

O

Now this matrix gives a symmetric tridiagonal linear
system, which can be solved relatively fast, see [6]
for more info. Expanding Equation 2-14 to 3D is
done by substituting the partial derivative of h with
respect to x with the Laplacian:









∂
∂+

∂
∂=

∂
∂

∇=
∂
∂

2

2

2

2

2

2

2
2

2

y
h

x
hGd

t
h

hGd
t
h

c

Equation 2-22

And it’s solved exactly as the 2D case simply by
splitting it up into two systems - one dependent on x
and one on y.

2.4 Surface waves
The last level of animation detail we use is strictly
2D surface waves. If we take our height-field from
earlier and constrains the water to a fixed depth,
Equation 2-22 reduces to:









∂
∂+

∂
∂=

∂
∂

2

2

2

2
2

2

2

y
h

x
hV

t
h

Equation 2-23

Where |V| is the velocity of the wave (across the
surface). Let hx,y

t be the height of the grid at
position x and y at time t, then Equation 2-23 can be
discretisised using central differences as [3]:

 Page 6 of 13

()








 −+++

=
∆

+−

−+−+

−+

2
,1,1,,1,12

2

1
,,

1

4

2,

h
hhhhh

V

t
hhh

t
yx

t
yx

t
yx

t
yx

t
yx

t
yx

t
yx

t
yx

Equation 2-24

And then rearranging for t+1:

() ()
() 1

,,2

22

1,1,,1,12

22

1

4
2

,

−

−+−+
+

−












 ∆
−

++++
∆

=

t
yx

t
yx

t
yx

t
yx

t
yx

t
yx

t

hh
h

tV

hhhh
h

tV
h yx

Equation 2-25

As shown in great detail in [3] this can be animated
with just a few arithmetic operation pr. grid-
element.

2.5 Mixing of the models
Ideally we would like to use NSE for all the water
dynamics, but even solutions of order O(n)4 is still
too computational expensive for real-time purposes.
Instead we decided to use NSE for surface details
only, restricting the problem to two dimensions. As
mentioned before, the core of our animation is the
FFT-water algorithm. This provides us both with
large waves, used for the actual geometry, and with
small waves optionally used for bump mapping.
While the waves generated in this way look very
realistic, they have one inherent problem – floating
objects cannot interact with the water in any way.
This is where the other models come in! We
implemented both the shallow water model as
described in chapter 2.3 Shallow water waves and
the “traditional” simple surface water as described
in chapter 2.4. The shallow water method has
several very advanced properties – it takes depth of
the surface into account (resulting in waves slowing
down and aligning with the coast line) and it can
simulate water that floods previously dry areas.
However, we didn’t intend to use the model for
these large-scale effects and for small waves, around
floating objects, the simpler model seems (at least
subjectively) to give better results (as well as being
a bit easier to control).
For mixing the FFT and physics water, we simply
take the geometry from the FFT algorithm and
superimpose on it the geometry resulting from the
physics model (that’s computed only around
floating objects). Although not physically correct,
this provides us with the results we desire.

2.6 Buoyant Rigid Objects
For adding a rigid object that interacts with the
water surface, we need to apply buoyancy to the
object and waves to the water surface.

4 For n being number of grid cells in the typical MAC
configuration.

One method for approximating buoyancy is
described for example in [3]. As known, according
to Archimedes, the force of buoyancy is equivalent
to the weight of water displaced by the floating
objects. To approximate the displaced volume, we
represent the object by a series of patches described
by the coordinates of their centre, their area (a) and
their normal (N). Then for a given patch (if it’s
centre lies in the water), the volume of displaced
water can be written as:

NPPav centerpatchwater)(_−=
where Pwater is the point on the water surface and
Ppatch_center is the position of the centre of the patch.
Now, for simplification, we can assume that this
force has always direction of the water surface’s
normal at the given sampling point. Thus the force
applied to the centre of our patch is:

watervNF ρ=
where ρρρρ is the water density. We apply this force to
the given point using the standard equation for rigid
object physics, as described for example in [13].
There are also two other forces that we should try to
simulate. First, floating objects don’t slide freely on
the water because of drag. We approximate it for
each patch using equation:

aVFdrag β−=

where ββββ is constant and V is velocity of the patch
centre relative to the water.
Also, when object with proper shape moves on the
water, it rises out from the water, depending of it’s
shape, orientation and velocity (this effect is best
seen on boats).
We use the following equation to approximate this
effect:

NVNaF)(⋅−= ϕ
where ϕϕϕϕ is another constant.
Note that we use bilinear interpolation of values
defined in the grid, to obtain all quantities
connected to the water surface, at arbitrary points on
the surface.
While this covers the way water affects floating
objects, there should also be feedback going in the
opposite way. The proper solution would be to take
the object into account directly in the physical
equations used for animating the water surface, but
since values entering these equations don’t represent
the complete mixed water anyway, we decided to
use another approach. First, for all grid elements
touched by any object, we temporally increase the
damping factor in the wave model used for object
interaction (this creates a wave “shadow” – i.e.
place in which waves don’t spread). Secondly, we
compute the change in depth of the floating object
between the last and current frame, and feed this
difference back to the water surface as direct
displacement of the surface. With correct scale of
this effect, we get both waves from objects that falls
into the water and waves formed behind moving
objects (such as boats).

 Page 7 of 13

3. Rendering

3.1 Reflection/Refraction
Most of the visual effects of water are due to
reflections and refractions (more detailed
description can be found for example in [2] and
[16]). When a ray hits the water surface, part of it
reflects back to the atmosphere (potentially hitting
some object and causing reflective caustics, or
hitting the water at other place, or camera), and part
of it transmits inside the water volume, scattering
(which causes god rays), hitting objects inside the
water (causing caustics) or going back into the
atmosphere. Thus completely correct lighting would
require sophisticated global shading equations and
wouldn’t even be close to realtime. We simplify this
by only taking first-order rays into account.

3.1.1 Reflection
The equation for reflection is well known. For an
eye vector E (i.e. the ray from the given point to the
eye) and the surface normal N, the reflected ray is:

ENNER −⋅=)(2
This ray is then used for lookup in cube-map
containing the environment (for ocean typically only
the sky).
While the cube-map is ideal for reflecting
environment in distance, it’s not very suitable for
local reflections (for example boat floating on the
water). For this we use a modification of the basic
algorithm used for reflections on flat surfaces
(described for example in [14]). We set up the view
matrix so that it shows the scene, as it would be
reflected from a flat plane placed at height zero, and
render the whole scene into a texture. Now if we
simple used projective textures, we could render the
water surface roughly reflecting the scene above it.
To improve the effect, we assume that our whole
scene is placed on a plane positioned slightly above
the water surface. We intersect the reflected ray with
this plane and then compute the intersection of ray
between this point and the reflected camera. The
resulting point is then fed into the projective texture
computations.
Note that when rendering to the texture, we set the
camera’s FOV (field of view) slightly higher than
one do for the normal camera, because the water
surface can reflect more of the scene than a flat
plane would.

3.1.2 Refraction
We will use Snell’s Law to calculate the refracted
ray that we need both for the refracted texture
lookup and for the caustics calculations. Snell’s
Law is simply:

i
b

a
r n

n Θ=Θ sinsin

Equation 3-1

Where Θi is the angle of incidence (i.e. angle
between the view vector and the surface normal), Θr
is the refracted angle (i.e. between the reflected ray
and negate of normal) and na and nb is the index of
refractions for the two materials in question. Setting
the index of refraction for air and water equal to 1
and 1.333 respectively we can write Equation 3-1
as:

))sin(333.1arcsin(ir Θ=Θ

Equation 3-2

While this works perfectly in 2D, use of this
equation directly in 3D would be too cumbersome.
When using vectors, it can be shown that the
refracted ray is described by:

E
n
nNE

n
nNE

n
nNT

b

a

b

a

b

a −












×







−±⋅= 2

2

1)(

Here + sign is used when 0<⋅ NE . For derivation
of this formula, see [15]. With this vector, we are
now ready to render the refraction visible on water
surface. For the global underwater environment we
again use a cube map. For local refractions we use
an algorithm very similar to that used for
reflections, with only two differences – the scene is
rendered into the texture normally, and the plane
we’re using for perturbing the texture coordinates is
placed below the water surface.

3.2 Approximating the Fresnel term
One of the most important visual aspects of
rendering water realistically is due to the Fresnel
equation that defines a weight for the blending
between the reflection and refraction. Without using
the Fresnel term, which defines the amount of
reflection according to the incoming light’s angle
and the index of refraction of the materials
considered, one typical gets a very “plastic look”.
From [1] we have:

()()
()()

1cos

1
11

)(2
)(

2

2

2

2

2

−+=∧=









+−
−++

+
−=

k
n
ngk

kgk
kgk

kg
kgF

b

aα

Equation 3-3

Here α is the angle between incoming light and the
surface normal and na and nb is the coefficients
from Snell’s law (Equation 3-2). Since we use an
index of 1.333 g only depends on k, so it’s possible
to precalculate this and store it in a one-dimensional
texture [4]. Another possibility is to approximate
Equation 3-3 with a simpler function so we can
calculate it directly with the CPU or on the GPU
using vertex-/pixel-shaders. In the implementation
of [5] they approximate this simply by a linear
function that we didn’t find adequate. Instead by
experimentations we found out that reciprocal of
different powers gives a very good approximation.

 Page 8 of 13

In Figure 3-1 we can see the error-plot of a few
different powers, and in Figure 3-2 we see our
chosen power compared against Equation 3-3.

Figure 3-1 Difference between approximations of
different powers compared to Equation 3-3. Red solid
line = power of 8. Blue dashed line = power of 7 and
Green dashed line = power of 6.

Figure 3-2. Fresnel 1/(x+ 1)8 approximation (dashed
blue line) vs Equation 3-3. X axis = cos between normal
and eye vector. Y axis = reflectivity parameter.

3.3 Colour of water
In chapter 3.1.2 we have described how to render
refractions on the water surface. It should however
be noted that for deep water, only local refractions
should be rendered since one cannot see the sea
bottom or any other deeply placed objects (and even
the local refractions should be rendered with some
kind of fogging). The water itself however has
colour that depends on the incident ray direction,
the viewing direction and the properties of the water
matter itself. To remedy for this effect we take the
equations presented in [16], that describes light
scattering and absorption in water, and modify them
as described shortly. If we don’t take any waves into
account (i.e. we treat the water surface as a flat
plane) and ignore effects like Godrays, we obtain
closed formulas for the watercolour depending only
on the viewing angle. This colour is then
precalculated for all directions and stored in a cube-
map, which is used in exactly the same way as the
cube-map for the refracted environment was.

Thanks to that we get darker blue water when
looking into depth and brighter greenish colour
when looking at the waves, as shown in Figure 3-3.

Figure 3-3. This image shows the result of using the
watercolour cube-map instead of the refraction cube-
map.

3.4 Using Bump-mapping to reduce
geometry
In addition to using traditional Level-Of-Detail
(LOD) methods for reducing our dense mesh, we
can place the highest frequencies from the FFT
directly into a bump-map. With the per pixel bump-
mapping capabilities of new hardware, one can
render with an extremely coarse grid-size and still
maintain a hi image quality as shown in Figure 3-4
with it’s wireframe shown in Figure 3-5.

Figure 3-4. Shallow water rendered with a real-time
updated bump-map. Due to the refraction one can see
contours of the mountain below.

 Page 9 of 13

Figure 3-5. Wireframe of the mesh used to render the
image in Figure 3-4. Please note that the crossing lines
are due to the degenerated trianglestips.

3.5 Caustics
Caustics are beautiful light sinuous shifting patterns
due to sunlight transmitted from the specular water
surface. Caustics are a typical indirect lighting effect
and are generally very hard to do in realtime.
Luckily we can optimise the problem by only
considering first order rays (i.e. only one specular-
diffuse transmission) and by assuming the receiving
diffuse surface is at a constant depth. Now given
these, visual acceptable, constraints we use a light
beam-tracing scheme described by Watt&Watt [1].
For each specular triangle (i.e. our water surface) we
create a light beam by calculating refracted rays for
each vertex using Snell’s law (Equation 3-1) with
the vertex’s normal (Nv) and the light-vector (i.e.
vector from sun to the vertex) (L) as arguments.
These light beams are then intersected against the
xz-plane (our sea-bottom) at a given constant y-
depth. See Figure 3-6 for an illustration of this
method. Each of these beams will then diverge or
converge on to the plane, so we need to describe
their intensity. In [1] they use the following:

)(
c

s
c a

aLNI ⋅=

Equation 3-4

Where N is the normal of the triangle, L as defined
earlier, as is the area of the specular surface (i.e.
triangle at the water surface) and ac is the area of the
caustic surface (i.e. triangle after intersecting with
the xz-plane). Since we know that the entire water
surface is refracted as light beams we can simply
create one huge degenerated5 triangle-strip for the
caustic mesh, and update the position and intensities
of this mesh’ vertices as described.

5 This is a strip that contains triangles with area zero,
that’s typically ignored by the graphic hardware.

Figure 3-6. Four sample triangles for caustics
computation.

Unfortunately although the FFT water surface tiles,
the resulting caustics pattern does not, because we
use only one tile of the surface in the computations.
Since calculating the caustics takes considerable
time we can’t afford to calculate it for the entire
ocean, so we need a way to make it “tileable”. We
solve this by blitting parts of the resulting caustic
texture nine times, one for each directions, from a
large caustic texture. Each part is added to the
middle “cut out” which we use as the final caustics
texture. This process is illustrated in Figure 3-7
with the result shown in Figure 3-8. A nice side
effect of this process is that we can use the multi-
texturing capabilities of today’s hardware to do
Anti-Aliasing at the same time. We simply set up
four passes of the same texture and perturblate the
coordinates of each pass slightly to simulate the
effect of a 2x2 super-sampling. This is in our
opinion needed, since the caustics patterns has a lot
of details that quickly aliases if the specular surface
isn’t dense enough to represent the pattern properly.
On the other hand we could of course use the other
passes to reduce the number of blits.

Figure 3-7. The left part of 1024x1024 caustics texture
is added to the right half of the inner 256x256 part of
the image. A similar process is done for the eight other
pieces.

 Page 10 of 13

Figure 3-8. Resulting 256x256 caustics texture with 2x2
AA. Notice how each side is added to the opposite so it
tiles seamlessly.

Since the caustics patterns changes rapidly with
depth, as seen in Figure 3-9, we use the camera’s
bounding box and previous depth to decide an
average depth to use.
For applying this texture to objects underwater, we
need a way to calculate the texture-coordinates into
the caustics texture. Given the sun’s ray direction
and the position of a triangle, we compute it’s
texture’s UV coordinates by projecting the texture

from the height of the water in the direction of the
ray (note that because this works as a parallel
projection, we don’t even have to use projective
textures here). In addition we compute the dot
product between the surface’s normal and the
inverted ray direction to obtain the intensity of the
applied texture (we use this as alpha then).
The same algorithm can be used to create reflective
caustics on objects above water.

Figure 3-9. From left to right these caustics pattern are at depth 10m, 100m and 200m respectively. Light is coming
directly from above (0,-1,0) in all images.

3.6 Godrays
In chapter 3.5 we described how the light causes
caustics by the water surface focusing and
defocusing light rays. However as the rays pass the
water matter, they scatter from small particles
floating in the water (plankton, dirt), making them
visible and causing streaks of light known as
Godrays. Rendering this phenomenon correctly
would require volumetric rendering. However if we
don’t insist on absolute correctness, preferring the
visual look of the result, we can use a quite simple
algorithm to create relatively convincing pictures.
We already have the caustics texture, which
represents shape and positions of the individual ray
streaks (even though only as a slice at given depth).
If we define this slice to represent the light intensity
for the whole volume, we can render it using
techniques for volumetric rendering.
Given position of our camera, we create several (in
our experiments 32) slices of the volume as seen in
Figure 3-10. We then render them into the
completed scene with additive alpha-blending (and
writes to zbuffer disabled).
Because this method shows visible artefacts –
revealing the low sampling, we use a non-uniform

distribution of the samples. We use high density in
front of camera – these samples are responsible for
the smooth look of the result and for bright spots
where they should be. The lower density samples
further away from the camera ensure that the rays
extend into distance.
Since increasing the number of rendering passes
considerably slows down the whole process, we can
use the multitexturing capabilities of graphics
hardware to increase the number of samples as
suggested in [12]. So even if we render just one
slice, we apply to it four textures at once as if they
represented subsequent samples of the volume. In
this way we obtain 128 samples on the GeForce3,
which gives us smooth enough pictures in most
cases (as seen in Figure 3-11).
Note that we can “skew” the volume, resulting from
repeating our caustics texture, in any way to
simulate rays going from a given direction
(according to position of the sun).
An additional improvement (which we didn’t
implement) would be to use shadow buffer to take
shadows cast by objects in water into account.

 Page 11 of 13

Figure 3-10. Slices of the volume in front of camera
used for rendering god rays.

Figure 3-11. Resulting image for the volume slices
shown in Figure 3-10

3.7 Foam, Spray and Bubbles
Whenever the water surface is violent enough or the
water meeting obstacles, we should see foam
resulting from the breaking waves. Probably the best
way to render this would be to use particle system,
but this would be quite costly for our purposes.
Instead, we take advantage from the fact that the
foam always lies on the water surface and render is
as another texture layer on top of it.
In our implementation, each vertex of the grid has
assigned an “amount of foam” to it. Then, when
rendering the surface, we use this amount as
transparency for the foam texture stretched over the
whole surface (the texture itself is rendered with
additive blending).
Now the only thing left to solve is spawning of the
foam itself. Here we use modification of the
algorithm suggested in [2]. For a given vertex and
its two neighbours (in x and z direction) we
compute the difference between their slopes. If you
remember the way we animated choppy waves in
paragraph 2.1.1, the displacement used does in fact
represent how close these points get. Now if the
computed difference is less than a chosen (negative)
limit, we increase the foam amount for the given
vertex by a small number. Otherwise, we decrease
its current foam amount (causing the foam already
existing to fade away). In this way we get foam
spawning near tops of big choppy (and possibly
meeting) waves. See Figure 3-12 for a typical result
of the foam generation.

It is important to note that even though the alpha
factor of the foam texture is limited to the range
[0,1], this is not true for the foam amount (that can
be more then one, but should be still limited). Also,
when we detect a foam-producing point, we
shouldn’t set its foam amount immediately to
maximum – the vertex is likely to spawn foam the
next few frames as well, and increasing the foam
amount slowly gives a better visual result.
Limitations of this technique are quite obvious – the
rendered foam looks quite similar at different places
(since it’s just a repeated texture, not an uniquely
generated pattern), and it doesn’t move on the water
surface according to it’s slope (though one might
get the impression that this is happening when using
the choppy waves algorithm).

Figure 3-12. Foam generated by our proposed
method.

3.7.1 Particle System
When water collides against obstacles we generate
spray of water using a particle system with simple
Newtonian dynamics, see [20]. Each particle is
given an initial velocity taken directly from the
water-surface’s velocity, at the spawning position,
with added turbulence. It’s then updated according
to gravity, wind and other global forces thereafter.
Rendering of the particles are done with a mixture
of alpha-transparency and additive-alpha sprites.
See Figure 3-13 for a screen shot of this effect. The
particle system is also used for drawing bobbles
from objects dropped into the water. For this effect
we simply move the bobbles on a sinus path around
the buoyancy vector up to the surface were they are
killed.

 Page 12 of 13

Figure 3-13. Water spray generated when two waves of
opposite direction meets.

4. Implementation details
We implemented the algorithms described in this
paper on a PC platform with windows. Both the
FFT-based and physical-based animations were
realized for grids with 64x64 elements. Two FFTs
were required for the animation, one complete
complex→complex for the surface slope (that is
later used either for the choppy waves or for surface
normals) and one complex→real for surface height.
Our first implementation used routines from [6], but
later we replaced them by faster routines from the
Intel Math Kernel Library.
Rendering is implemented in DirectX 8.1 using
nVidia’s GeForce3 hardware for rendering. While
the basic computations (heights, normals, foam etc.)
is done only once for a single water tile (that can be
repeated all over the place), many other
computations depends on the viewer position (we
use local viewer everywhere) and thus had to be
done separately for each tile. This offers perfect
opportunity for the use of vertex shaders, offloading
the burden of those computations from CPU. Some
of these effects (especially per-pixel bump-
mapping) requires the use of pixel shaders as well,
but in general most of the algorithms described here
should be possible on DirectX7 class hardware.

5. Summary and future
extensions
We have presented a new scheme for deep-water
animation and rendering. It’s main contributions on
the animation side is the blending of proven
methods for realistic object/ocean interaction. On
the rendering side we have presented a new method
for foam rendering and shown clever use of the new
3D graphic cards features to reach new levels of
(realtime) realism.
There are many extensions, to the current
implementations, that we want to try out in the
future. First of all we are not to impressed by our
Phong shaded water shimmering. We believe this is
mainly because of too low contrast in the final
image. Contrast enhancement can probably be
realised by using Hi-Dynamic Range Images
(HDRI), as described in [22]. We also want to try

prefiltering of the environment-map [21] to
approach the BRDF shading of water. When it
comes to animation, there’s so much cool stuff out
there to follow up! Foremost we are trying to get the
ocean sinus model from [23] to work with our
system…breaking waves next?

5.1 Acknowledgements
We would like to thank Richard Lee for
implementing the choppy waves modification and
“forcing” us to add light shimmering. Super-hero-
star to Tore Blystad and Christian Morgan Enger
for their excellent demo artwork, and a final thank
to Mads Staff Jensen for the slide illustrations!

A. References
[1] Alan Watt and Mark Watt. “Advanced animation

and rendering techniques”. ISBN 0-201-54412-1
[2] Jerry Tessendorf. “Simulating Ocean Water”.

SIGGRAPH 2001 Course notes.
http://home1.gte.net/tssndrf/index.html.

[3] Miguel Gomez. “Interactive Simulation of Water
Surfaces”. Game Programming Gems. ISBN 1-
58450-049-2.

[4] Anis Ahmad. “Improving Environment-Mapped
Reflection Using Glossy Prefiltering and the Fresnel
term”. Game Programming Gems. ISBN 1-58450-
049-2.

[5] Alex Vlachos and Jason L.Mitchell. “Refraction
Mapping for Liquids in Containers.” Game
Programming Gems. ISBN 1-58450-049-2.

[6] Press, Teukolsky, Vetterling, Flannery. “Numerical
Recipes in C, The Art of Scientific Computing”.
Second edition. Cambridge University Press. ISBN
0-521-43108-5.

[7] Jim X. Chen, Niels da Vitoria Lobo, Charles E.
Hughes and J.Michael Moshell. “Real-Time Fluid
Simulation in a Dynamic Virtual Environment”.
IEEE Computer Graphics and Application. May-
June 1997, pp.52-61.

[8] Nick Foster and Dimitri Metaxas. “Realistic
Animation of Liquids”. Graphical Models and Image
Processing, 58(5), 1996, pp.471-483.

[9] Nick Foster and Dimitri Metaxas. “Controlling Fluid
Animation”. Proceeding of the Computer Graphics
International (CGI’97).

[10] Nick Foster and Dimitri Metaxas. “Modeling the
Motion of a Hot, Turbulent Gas”. Computer
Graphics Proceeding, Annual Conference Series,
1997, pp. 181-188.

[11] Jos Stam. “Stable Fluids”. SIGGRAPH’99
Proceedings.

[12] C.Rezk-Salama, K.Engel, M.Bauer, G.Greiner,
T.Ertl. “Interactive Volume Rendering on Standard
PC Graphics Hardware Using Multi-Textures And
Multi-Stage Rasterization”

[13] David Baraff, Andrew Witkin. “Physically Based
Modeling” SIGGRAPH 98 course notes.

[14] Mark J.Kilgard. “Improving Shadows and
Reflections via the Stencil Buffer”, nVidia white
paper.

[15] Foley, van Dam, Feiner and Huges. “Computer
Graphics. Principles and Practice.” ISBN 0-201-
84840-6.

[16] Tomoyuki Nishita, Eihac hiro Nakamae. “Method of
Displaying Optical Effects within Water using
Accumulation Buffer”

http://home1.gte.net/tssndrf/index.html

 Page 13 of 13

[17] Michael Kass and Gavin Miller. “Rapid, Stable Fluid
Dynamics for Computer Graphics”. Computer
Graphics, Volume 24, Number 4, August 1990.

[18] Joe Stam. “A Simple Fluid Solver based on the
FFT”. Journal of Graphics Tools.
http://reality.sgi.com/jstam_sea/Research/pub.html

[19] Hugh D. Young. “University Physics. Eighth
edition”. ISBN 0-201-52690-5.

[20] Lasse Staff Jensen. ”Game Physics. Part I:
Unconstraint Rigid Body Motion”.

[21] Wolfgang Heidrich. “Environment Maps And Their
Application”.

[22] Jonathan Cohen, Chris Tchou, Tim Hawkins and
Paul Debevec. “Real-time High Dynamic Range
Texture Mapping.”. Eurographics Rendering
Workshop 2001.

[23] Alain Fournier and William T. Reeves. “A simple
model of Ocean waves”. SIGGRAPH 1986
Proceedings.

All these pictures are screen dumps from a realtime application
running on a PIII 450MHz PC with GeForce3 graphics card.

http://reality.sgi.com/jstam_sea/Research/pub.html

	A
	Abstract
	Introduction
	Animation
	FFT

	Equation 2˚1
	Equation 2˚2
	Equation 2˚3
	Equation 2˚4
	
	Choppy Waves

	Equation 2˚5
	Figure 2˚1. Normal wave profile.
	Figure 2˚2. Choppy waves: Profile of the waves in Figure 2˚1 after the modification.
	Navier-Stokes Equations

	Equation 2˚6
	Equation 2˚7
	
	
	
	
	
	Where ? is density, V is velocity and L is dimension.

	Now that we have all the forces acting in fluids, we will use Newton’s second law (F = mA) to describe the motion:
	Equation 2˚8
	Equation 2˚9
	Equation 2˚10
	Figure 2˚3. Our 2D NSE solver showing how the particles forms streamlines in the closed container. The velocity and pressure field is also shown on the right side of the view.
	Figure 2˚4. This image shows the subtle, but lovely, surface details, resulting from the real-time updated bump-map (particle field solved with the 2D NSE).
	Shallow water waves

	Equation 2˚11
	Equation 2˚12
	Equation 2˚13
	Equation 2˚14
	Equation 2˚15
	Equation 2˚16
	Equation 2˚17
	Equation 2˚18
	Equation 2˚19
	Equation 2˚20
	Equation 2˚21
	Equation 2˚22
	Surface waves

	Equation 2˚23
	Equation 2˚24
	Equation 2˚25
	Mixing of the models
	Buoyant Rigid Objects

	Rendering
	Reflection/Refraction
	Reflection
	Refraction

	Equation 3˚1
	Equation 3˚2
	Approximating the Fresnel term

	Equation 3˚3
	Figure 3˚2. Fresnel 1/(x+ 1)8 approximation (dashed blue line) vs Equation 3˚3. X axis = cos between normal and eye vector. Y axis = reflectivity parameter.
	Colour of water

	Figure 3˚3. This image shows the result of using the watercolour cube-map instead of the refraction cube-map.
	Using Bump-mapping to reduce geometry

	Figure 3˚4. Shallow water rendered with a real-time updated bump-map. Due to the refraction one can see contours of the mountain below.
	Figure 3˚5. Wireframe of the mesh used to render the image in Figure 3˚4. Please note that the crossing lines are due to the degenerated trianglestips.
	Caustics

	Equation 3˚4
	Figure 3˚6. Four sample triangles for caustics computation.
	Figure 3˚7. The left part of 1024x1024 caustics texture is added to the right half of the inner 256x256 part of the image. A similar process is done for the eight other pieces.
	Figure 3˚8. Resulting 256x256 caustics texture with 2x2 AA. Notice how each side is added to the opposite so it tiles seamlessly.
	Figure 3˚9. From left to right these caustics pattern are at depth 10m, 100m and 200m respectively. Light is coming directly from above (0,-1,0) in all images.
	Godrays

	Figure 3˚10. Slices of the volume in front of camera used for rendering god rays.
	Figure 3˚11. Resulting image for the volume slices shown in Figure 3˚10
	Foam, Spray and Bubbles

	Figure 3˚12. Foam generated by our proposed method.
	
	Particle System

	Figure 3˚13. Water spray generated when two waves of opposite direction meets.
	Implementation details
	Summary and future extensions
	Acknowledgements

	References

